The Role of Transverse Occipital Sulcus in Scene Perception and Its Relationship to Object Individuation in Inferior Intraparietal Sulcus

نویسندگان

  • Katherine C. Bettencourt
  • Yaoda Xu
چکیده

The parietal cortex has been functionally divided into various subregions; however, very little is known about how these areas relate to each other. Two such regions are the transverse occipital sulcus (TOS) scene area and inferior intraparietal sulcus (IPS). TOS exhibits similar activation patterns to the scene selective parahippocampal place area, suggesting its role in scene perception. Inferior IPS, in contrast, has been shown to participate in object individuation and selection via location. Interestingly, both regions have been localized to the same general area of the brain. If these two were actually the same brain region, it would have important implications regarding these regions' role in cognition. To explore this, we first localized TOS and inferior IPS in individual participants and examined the degree of overlap between these regions in each participant. We found that TOS showed only a minor degree of overlap with inferior IPS (∼10%). We then directly explored the role of TOS and inferior IPS in object individuation and scene perception by examining their responses to furnished rooms, empty rooms, isolated furniture, and multiple isolated objects. If TOS and inferior IPS were the same region, we would expect to see similar response patterns in both. Instead, the response of TOS was predominantly scene selective, whereas activity in inferior IPS was primarily driven by the number of objects present in the display, regardless of scene context. These results show that TOS and inferior IPS are nearby but distinct regions, with different functional roles in visual cognition.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Distinctive Neural Mechanisms Supporting Visual Object Individuation and Identification

Many everyday activities, such as driving on a busy street, require the encoding of distinctive visual objects from crowded scenes. Given resource limitations of our visual system, one solution to this difficult and challenging task is to first select individual objects from a crowded scene (object individuation) and then encode their details (object identification). Using functional magnetic r...

متن کامل

Neural Representation of Targets and Distractors during Object Individuation and Identification

In many everyday activities, we need to attend and encode multiple target objects among distractor objects. For example, when driving a car on a busy street, we need to simultaneously attend objects such as traffic signs, pedestrians, and other cars, while ignoring colorful and flashing objects in display windows. To explain how multiple visual objects are selected and encoded in visual STM and...

متن کامل

Transcranial Magnetic Stimulation to the Transverse Occipital Sulcus Affects Scene but Not Object Processing

Traditionally, it has been theorized that the human visual system identifies and classifies scenes in an object-centered approach, such that scene recognition can only occur once key objects within a scene are identified. Recent research points toward an alternative approach, suggesting that the global image features of a scene are sufficient for the recognition and categorization of a scene. W...

متن کامل

Understanding location- and feature-based processing along the human intraparietal sulcus.

Based on different cognitive tasks and mapping methods, the human intraparietal sulcus (IPS) has been subdivided according to multiple different organizational schemes. The presence of topographically organized regions throughout IPS indicates a strong location-based processing in this brain region. However, visual short-term memory (VSTM) studies have shown that while a region in the inferior ...

متن کامل

The occipital place area is causally and selectively involved in scene perception.

Functional magnetic resonance imaging has revealed a set of regions selectively engaged in visual scene processing: the parahippocampal place area (PPA), the retrosplenial complex (RSC), and a region around the transverse occipital sulcus (previously known as "TOS"), here renamed the "occipital place area" (OPA). Are these regions not only preferentially activated by, but also causally involved...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of cognitive neuroscience

دوره 25 10  شماره 

صفحات  -

تاریخ انتشار 2013